l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture for financial assistance.

Table 3. Hydrogen-bond distances (\AA) and angles (${ }^{\circ}$)

$D-\mathrm{H} \cdots \cdots \cdot A$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}(4)-\mathrm{H}(13) \cdots \mathrm{O}\left(2^{i}\right)$	$1 \cdot 57(8)$	$2 \cdot 53(2)$	$161(8)$
$\mathrm{N}^{+}-\mathrm{H}(1) \cdots \mathrm{O}_{\left(1^{I I}\right)}$	$1.76(12)$	$2 \cdot 69(2)$	$171(8)$

Notation: (i) $1-x, \bar{y}, \bar{z}$; (ii) $x, 1+y, 1+z$.

References

Declerce, J.-P., Germain, G., Main, P.\& Woolfson, M. M. (1973). Acta Cryst. A 29, 231-234.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Rudman, R. (1971). Acta Cryst. B27, 262-269.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. H. \& Hall, S. R. (1972). The X-RAY system version of June 1972. Tech. Rep. TR-192, Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1976). B32, 2720

Ditellurium(IV) Trioxosulphate

By Göran B. Johansson and Oliver Lindqvist
Department of Inorganic Chemistry, Chalmers' University of Technology and the University of Göteborg, P.O. Box, S-402 20 Göteborg 5, Sweden

(Received 25 March 1976; accepted 10 April 1976)

Abstract. $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}, P 2_{1} n m$, orthorhombic, $a=4 \cdot 654$ (1), $b=6.936$ (1), $c=8.879$ (2) $\AA, Z=2, V=286.6$ (1) $\AA^{3}, M=399 \cdot 26, D_{x}=4.63 \mathrm{~g} \mathrm{~cm}^{-3}$. The S-O distances are 1.47 (1)-1.49 (1) \AA. The $\mathrm{Te}^{1 \mathrm{v}}$ coordination is threefold pyramidal with $\mathrm{Te}-\mathrm{O}$ distances of 1.89 (1), 1.91 (1) and 2.00 (1) \AA. In addition there are three longer $\mathrm{Te}-\mathrm{O}$ bonds of $2 \cdot 26$ (1), $2 \cdot 63$ (1) and 2.84 (1) \AA. The TeO_{3} and SO_{4} units are connected to form sheets.

Introduction. The preparation of $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ has been described by Hubková, Loub \& Syneček (1966), who found that $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ belonged to space group $P 2_{1} n m$. Since there were, however, uncertainties about the proposed structure, a complete redetermination has been performed. Single crystals were prepared and provided by Dr Moret, Montpellier. The cell dimensions were refined (Lindqvist \& Wengelin, 1967) from 48* lines measured on a Guinier powder photograph, taken with KCl as an internal standard ($a_{\mathrm{KCl}}=6.2919$ \AA at $20^{\circ} \mathrm{C}$; Hambling, 1953).

Intensities were collected on a two-circle Pailred diffractometer with Mo $K \alpha$ radiation and a graphite monochromator. The ω-scan procedure was used with a scan speed of $2.5^{\circ} \mathrm{min}^{-1}$ and the background was measured for $24 s$ at each end of the scan interval ($\Delta \omega=3-6^{\circ}$). The layers $0 k l-8 k l$ were registered out to $2 \theta=100^{\circ}$ and 1050 unique reflexions for which $\sigma(I) / I<0 \cdot 3$ were used in the structure analysis. The intensities were corrected for absorption (program DATAP2; Coppens, Leiserowitz \& Rabinovich, 1965).

[^0]A drawing of the crystal used for the data collection is shown in Fig. 1. $\mu(\mathrm{Mo} \mathrm{K} \alpha)=177.6 \mathrm{~cm}^{-1}$ (International Tables for X-ray Crystallography, 1962).
The structure was solved from Patterson and electron density calculations (program DRF; A. Zalkin, Berkeley) and the space group confirmed to be $P 2_{1} n m$ in accordance with the systematic absences $h+l=2 n+1$ for the $h 0 l$ reflexions. The structural parameters were refined with the block-diagonal approximation (program $B L O C K$; O. Lindgren, Göteborg), initially with isotropic temperature factors and separate scale factors for each layer ($R=0.052$) and subsequently with anisotropic temperature factors and an overall scale factor ($R=0 \cdot 047$). The positional parameters obtained from

Fig. 1. The crystal used for data collection. The distances are given in mm .
the two refinements were the same within the standard deviations. The final parameters are given in Table 1. Scattering factors for Te (Cromer \& Waber, 1965), S and O (Doyle \& Turner, 1968) were corrected for the real part of the anomalous scattering (Cromer, 1965). Weights $w=20.0+F_{o}+0.004 F_{o}^{2}$ were used. No extinction correction was performed, since only a few of the strongest reflexions appeared to be affected.

Discussion. Crystals of tellurates(IV) are usually prepared by hydrothermal syntheses or from melts. Action of conc. HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ on Te metal can also be used,
e.g. TeO_{2} (Lindqvist, 1968), $\mathrm{Te}_{2} \mathrm{O}_{4} . \mathrm{HNO}_{3}$ (Swink \& Carpenter, 1966) and $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ (Hubková, Loub \& Syneček, 1966). Both TeO_{2} and $\mathrm{Te}_{2} \mathrm{O}_{4}$. HNO_{3} have three-dimensional $\mathrm{Te}-\mathrm{O}$ net structures with four-coordinated $\mathrm{Te}^{\mathrm{IV}}$ atoms.

Bond distances and angles are given in Table 2. $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ has a layer structure (Figs. 2 and 3) in which the SO_{4} tetrahedron is strongly connected to the layers via two $\mathrm{Te}-\mathrm{O}$ bonds of $2 \cdot 26$ (1) \AA. The layers are held together by van der Waals contacts. A similar structural arrangement has been found in $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{HPO}_{4}$ (Mayer, 1975).

Table 1. Atomic parameters in $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$
Positional parameters are given as fractions of the lattice translation. The general point position in $P 2_{1} n m$ is $(x, y, z),(x, y,-z)$, $\left(\frac{1}{2}+x,-y, \frac{1}{2}-z\right),\left(\frac{1}{2}+x,-y, \frac{1}{2}+z\right)$. The isotropic temperature factor, B, is given in \AA^{2} and the anisotropic temperature factors correspond to the expression $T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+U_{12} h k a^{*} b^{*}+U_{13} h l a^{*} c^{*}+U_{23} k l b^{*} c^{*}\right) \times 10^{-4}\right]$. Estimated standard deviations are given in parentheses.

	x	y	z	B	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Te	$0 \dagger$	$0 \cdot 1783$ (1)	$0 \cdot 1991$ (1)	0.458 (5)	57 (1)	67 (1)	49 (1)	13 (10)	-7 (9)	-5 (3)
S	$0 \cdot 4236$ (9)	$0 \cdot 4809$ (5)	0	$0 \cdot 57$ (4)	69 (9)	72 (11)	72 (11)	-24 (21)	0	0
$\mathrm{O}(1)$	0.657 (3)	0.338 (2)	0	$1 \cdot 1$ (2)	115 (38)	205 (51)	126 (45)	268 (89)	0	0
O(2)	$0 \cdot 248$ (2)	$0 \cdot 447$ (1)	$0 \cdot 138$ (1)	$0 \cdot 8$ (1)	133 (28)	105 (26)	96 (27)	- 17 (50)	133 (50)	-21 (49)
O(3)	0.088 (3)	0.091 (2)	0	$0 \cdot 6$ (1)	106 (36)	70 (33)	50 (32)	-28 (66)	0	0
O(4)	0.635 (2)	0.091 (1)	$0 \cdot 263$ (1)	$1 \cdot 1$ (1)	84 (25)	116 (29)	257 (44)	-36 (57)	67 (68)	55 (66)
$\mathrm{O}(5)$	0.029 (3)	$0 \cdot 318$ (2)	0.5	$1 \cdot 3$ (2)	152 (48)	175 (38)	174 (45)	328 (116)	0	0

Fig. 2. A stereoscopic picture of the structure projected along the c axis ($O R T E P$; Johnson, 1965).

Fig. 3. A stereoscopic view along the a axis, showing one sheet of Te-O connexions (ORTEP; Johnson, 1965).

Table 2. Distances and angles in $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$

$\mathrm{Te}-\mathrm{O}(4)$	$1.89(1)$
$-\mathrm{O}(3)$	$1.914(5)$
$-\mathrm{O}^{\prime}(4)$	$2.00(1)$
$-\mathrm{O}(2)$	$2.26(1)$
$-\mathrm{O}(1)$	$2.63(1)$
$-\mathrm{O}(5)$	$2.844(5)$
$-\mathrm{O}(4)$	$3.07(1)$
$\mathrm{S}-\mathrm{O}(1)$	$1.47(1)$
$-\mathrm{O}(5)$	$1.48(1)$
$-\mathrm{O}(2)(2 \times)$	$1.49(1)$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	$107.3(5)$
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(2)$	$110.5(8)$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(5)$	$113.0(8)$
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(5)$	$109.3(5)$

$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}(2)$	$78 \cdot 5(4)$
$\mathrm{O}(1)-\mathrm{O}(3)$	$69 \cdot 1(4)$
$\mathrm{O}(1)-\mathrm{O}(4)$	$78 \cdot 1(4)$
$\mathrm{O}(1)-\mathrm{O}(4)$	$134 \cdot 3(4)$
$\mathrm{O}(1)-\mathrm{O}(5)$	$121 \cdot 1(4)$
$\mathrm{O}(2)-\mathrm{O}(3)$	$86 \cdot 0(4)$
$\mathrm{O}(2)-\mathrm{O}(4)$	$142 \cdot 8(4)$
$\mathrm{O}(2)-\mathrm{O}(4)$	$130 \cdot 5(4)$
$\mathrm{O}(2)-\mathrm{O}(5)$	$85 \cdot 5(3)$
$\mathrm{O}(3)-\mathrm{O}(4)$	$111 \cdot 6(5)$
$\mathrm{O}(3)--\mathrm{O}^{\prime}(4)$	$77 \cdot 9(5)$
$\mathrm{O}(3)-\mathrm{O}(5)$	$164 \cdot 9(5)$
$\mathrm{O}(4)--\mathrm{O}^{\prime}(4)$	$86 \cdot 1(3)$
$\mathrm{O}(4)-\mathrm{O}(5)$	$82 \cdot 5(4)$
$\mathrm{O}^{\prime}(4)-\mathrm{O}(5)$	$98 \cdot 4(4)$

The coordination of $\mathrm{Te}^{\mathrm{IV}}$ is intermediate between three- and fourfold. $\mathrm{Te}^{\mathrm{IV}}$ coordination can usually be described in terms of a trigonal bipyramid in which the two shortest $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}$ bonds are equatorial and the two next shortest are axial while the third equatorial position is occupied by a free electron pair (covalent type; Lindqvist, 1973). However, in $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ three of the strongly coordinated O atoms lie in a plane $[O(2), O(4)$ and $\left.O\left(4^{\prime}\right)\right]$ while the fourth $[O(3)]$ is perpendicular to this plane (Fig. 4). In addition there are two weak Te-O interactions (2.63 and $2.84 \AA$). The coordination may also be described in terms of an ionic model (Johansson \& Lindqvist, 1976).

We thank Professor G. Lundgren for valuable discussions and Dr S. Jagner for revising the English text. Financial aid has been provided by the Swedish Natural Science Research Council (NFR, contract No. 2318).

References

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.

Fig. 4. The oxygen coordination of tellurium(IV).

Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-399.
Hambling, P. G. (1953). Acta Cryst. 6, 98.
Hubková, H., Loub, J. \& Syneček, V. (1966). Coll. Czech. Chem. Commun. 31, 4353-4361.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johansson, B. G. \& LindQvist, O. (1976). Acta Cryst. B32, 407-411.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Lindqvist, O. (1968). Acta Chem. Scand. 22, 977-982.
LindQvist, O. (1973). Thesis. Univ. of Göteborg, Sweden.
Lindqvist, O. \& Wengelin, F. (1967). Ark. Kem. 28, 179-191.
Mayer, H. (1975). Z. Kristallogr. 127, 354-362.
Swink, L. N. \& Carpenter, G. B. (1966). Acta Cryst. 21, 578-583.

[^0]: * Lists of observed and calculated $\sin ^{2} \theta_{h k l}$ and $d_{h k l}$ values, and structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31788 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

